A New Method of Porous Space Reconstruction Using Multipoint Histogram Technology

Author:

Zhang Na1,Sun Qian2,Fadlelmula Mohamed2,Rahman Aziz2,Wang Yuhe2

Affiliation:

1. Petroleum Engineering, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar e-mail:

2. Petroleum Engineering, Texas A&M University at Qatar, Education City, P.O. Box 23874 Doha, Qatar e-mail:

Abstract

Pore-scale modeling is becoming a hot topic in overall reservoir characterization process. It is an important approach for revealing the flow behaviors in porous media and exploring unknown flow patterns at pore scale. Over the past few decades, many reconstruction methods have been proposed, and among them the simulated annealing method (SAM) is extensively tested and easier to program. However, SAM is usually based on the two-point probability function or linear-path function, which fails to capture much more information on the multipoint connectivity of various shapes. For this reason, a new reconstruction method is proposed to reproduce the characteristics of a two-dimensional (2D) thin section based on the multipoint histogram. First, the two-point correlation coefficient matrix will be introduced to determine an optimal unit configuration of a multipoint histogram. Second, five different types of seven-point unit configurations will be used to test the unit configuration selection algorithm. Third, the multipoint histogram technology is used for generating the porous space reconstruction based on the prior unit configuration with a different calculation of the objective function. Finally, the spatial connectivity, patterns reproduction, the local percolation theory (LPT), and hydraulic connectivity are used to compare with those of the reference models. The results show that the multipoint histogram technology can produce better multipoint connectivity information than SAM. The reconstructed system matches the training image very well, which reveals that the reconstruction captures the geometry and topology information of the training image, for instance, the shape and distribution of pore space. The seven-point unit configuration is enough to get the spatial characters of the training image. The quality of pattern reproduction of the reconstruction is assessed by computing the multipoint histogram, and the similarity is around 97.3%. Based on the LPT analysis, the multipoint histogram can describe the anticipated patterns of geological heterogeneities and reproduce the connectivity of pore media with a high degree of accuracy. The two-point correlation coefficient matrix and a new construction theory are proposed. The new construction theory provides a stable theory and technology guidance for the study of pore space development and multiphase fluid flow rule in the digital rock.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3