Shale Digital Core Image Generation Based on Generative Adversarial Networks

Author:

Zha Wenshu1,Li Xingbao1,Li Daolun1,Xing Yan1,He Lei1,Tan Jieqing1

Affiliation:

1. Hefei University of Technology, Institute of Mathematics, Hefei, Anhui 230009, China

Abstract

Abstract Stochastic reconstruction of digital core images is a vital part of digital core physics analysis, aiming to generate representative microstructure samples for sampling and uncertainty quantification analysis. This paper proposes a novel reconstruction method of the digital core of shale based on generative adversarial networks (GANs) with powerful capabilities of the generation of samples. GANs are a series of unsupervised generative artificial intelligence models that take the noise vector as an input. In this paper, the GANs with a generative and a discriminative network are created respectively, and the shale image with 45 nm/pixel preprocessed by the three-value-segmentation method is used as training samples. The generative network is used to learn the distribution of real training samples, and the discriminative network is used to distinguish real samples from synthetic ones. Finally, realistic digital core samples of shale are successfully reconstructed through the adversarial training process. We used the Fréchet inception distance (FID) and Kernel inception distance (KID) to evaluate the ability of GANs to generate real digital core samples of shale. The comparison of the morphological characteristics between them, such as the ratio of organic matter and specific surface area of organic matter, indicates that real and reconstructed samples are highly close. The results show that deep convolutional generative adversarial networks with full convolution properties can reconstruct digital core samples of shale effectively. Therefore, compared with the classical methods of reconstruction, the new reconstruction method is more promising.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference34 articles.

1. The Microscale Analysis of Reverse Displacement Based on Digital Core;An;J. Nat. Gas Sci. Eng.,2016

2. Numerical Simulation Method of Digital Core Electrical Property and Its Development Orientations;Kong;China Pet. Explor.,2015

3. FIB-SEM Dual-Beam System and its Partial Applications;Fu;J. Chin. Electron Microsc. Soc.,2016

4. Industrial Applications of Digital Rock Technology;Berg;J. Pet. Sci. Eng.,2017

5. Lattice Boltzmann Simulation of Wormhole Propagation in Carbonate Acidizing;Ma;ASME J. Energy Resour. Technol.,2017

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3