High-Thrust Aerostatic Bearing Design Through Transient Perturbation Modeling With Numerical Validation

Author:

Mondal Nripen1,Saha Binod Kumar2,Saha Rana3,Sanyal Dipankar4

Affiliation:

1. Department of Mechanical Engineering, Jalpaiguri Govt. Engg. College, Jalpaiguri 735102, West Bengal, India e-mail:

2. CSIR-CMERI, M G Avenue, Durgapur 713209, India e-mail:

3. Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India e-mail:

4. Professor Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India e-mail:

Abstract

A simple perturbation flow model is formulated and validated by a rigorous computational fluid dynamics (CFD) study for designing a counterbalanced vertical-axis aerostatic thrust bearing. The flow model of the orifice at the entry of the stator manifold involves natural transition between the choked and free flows. While the air distribution network of holes in the stator and one air gap at the inner radius of the stator constitute the fixed part, the variable part is comprised of two air gaps at the top and bottom of the stator interconnected by the inner air gaps. The top and the inner gaps receive air by a circular array of holes. While the basic flow of the perturbation model is taken as steady corresponding to fixed air gaps, the transient effect is captured by a squeezing flow due to the variations of the top and bottom gaps. The overall flow including that in the network is assumed as compressible and isothermal. This model has been validated through a transient axisymmetric CFD study using dynamic meshing and the coupled lifting dynamics of the payload. The validated model has been used to find the appropriate counterbalancing, the orifice diameter, the air gap sizes, and the location of the air holes feeding the top gap. This clearly shows the worth of the model for carrying out an extensive design analysis that would have been very costly and even unachievable for small gaps that would occur during system transients.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3