Modeling of Nonequilibrium Surface Melting and Resolidification for Pure Metals and Binary Alloys

Author:

Wang G.-X.1,Matthys E. F.1

Affiliation:

1. Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, CA 93106

Abstract

A model was developed for surface melting and resolidification of both pure metal and binary alloy substrates. Nonequilibrium kinetics are introduced in the model to account for the departure from thermodynamic equilibrium at the solid/liquid interface. The modeled problem involves a moving boundary with both heat and solute diffusion and is solved by an implicit control volume integral method with solid/liquid interface immobilization by coordinate transformation. To illustrate the model capabilities, we have analyzed laser-induced surface melting of pure metals (Al, Cu, Ni, Ti) and dilute Al–Cu alloys, and some typical results are presented. The computation results show some large solid overheating and melt undercooling effects, which result from the high heat flux and the slow kinetics. Large interface velocity variations are also seen during the process, depending on the substrate material and laser flux. Complex interface velocity variations during the earlier stages of resolidification were also predicted for the alloys, and result from interactions between the several physical mechanisms involved. Results on interface temperatures, solute concentrations, and nonequilibrium partition coefficients are also presented.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3