Forward Displacement Analysis of a Linearly Actuated Quadratic Spherical Parallel Manipulator

Author:

Kong Xianwen1,Gosselin Clément2,Ritchie James M.1

Affiliation:

1. Department of Mechanical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

2. Département de Génie Mécanique, Université Laval, Pavillon Adrien-Pouliot, 1065 Avenue de la Médicine, Québec, PQ, G1V 0A6, Canada

Abstract

A quadratic parallel manipulator refers to a parallel manipulator with a quadratic characteristic polynomial. This paper revisits the forward displacement analysis (FDA) of a linearly actuated quadratic spherical parallel manipulator. An alternative formulation of the kinematic equations of the quadratic spherical parallel manipulator is proposed. The singularity analysis of the quadratic spherical parallel manipulator is then dealt with. A new type of singularity of parallel manipulators—leg actuation singularity—is identified. If a leg is in a leg actuation singular configuration, the actuated joints in this leg cannot be actuated even if the actuated joints in other legs are released. A formula is revealed that produces a unique current solution to the FDA for a given set of inputs. The input space is also revealed for the quadratic spherical parallel manipulator in order to guarantee that the robot works in the same assembly mode. This work may facilitate the control of the quadratic spherical parallel manipulator.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. Kinematics and Singularity Analysis of a Novel Type of 3-C̱RR 3-DOF Translational Parallel Manipulator;Kong;Int. J. Robot. Res.

2. Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulator,” U.S. Patent No. 6,729,202.

3. Singularity-Free Fully Isotropic Translational Parallel Mechanisms;Carricato;Int. J. Robot. Res.

4. Design Optimization of Cartesian Parallel Manipulator;Kim;ASME J. Mech. Des.

5. Structural Synthesis of Fully-Isotropic Translational Parallel Robots via Theory of Linear Transformations;Gogu;Eur. J. Mech. A/Solids

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3