Higher-Order Analysis of Kinematic Singularities of Lower Pair Linkages and Serial Manipulators

Author:

Müller Andreas1

Affiliation:

1. Institute of Robotics, Johannes Kepler University, Linz 4040, Austria e-mail:

Abstract

Kinematic singularities of linkages are configurations where the differential mobility changes. Constraint singularities are critical points of the constraint mapping defining the loop closure constraints. Configuration space (c-space) singularities are points where the c-space ceases to be a smooth manifold. These singularity types are not identical and can neither be distinguished nor identified by simply investigating the rank deficiency of the constraint Jacobian (linear dependence of joint screws). C-space singularities are reflected by the c-space geometry. In a previous work, a kinematic tangent cone was introduced as an approximation of the c-space, defined as the set of tangents to smooth curves in c-space. Identification of kinematic singularities amounts to analyze the local geometry of the set of critical points. As a computational means, a kinematic tangent cone to the set of critical points is introduced in terms of Jacobian minors. Closed form expressions for the derivatives of the minors in terms of Lie brackets of joint screws are presented. A computational method is introduced to determine a polynomial system defining the kinematic tangent cone. The paper complements the recently proposed mobility analysis using the tangent cone to the c-space. This allows for identifying c-space and kinematic singularities as long as the solution set of the constraints is a real variety. The introduced approach is directly applicable to the higher-order analysis of forward kinematic singularities of serial manipulators. This is briefly addressed in the paper.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3