A Study on Natural Convection in a Cold Square Enclosure With Two Vertical Eccentric Square Heat Sources Using the IB–LBM Scheme

Author:

Dash S. M.1,Sahoo S.2

Affiliation:

1. Aerospace Engineering, Indian Institute of Technology, Kharagpur, India e-mail:

2. Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India e-mail:

Abstract

In this article, the natural convection process in a two-dimensional cold square enclosure is numerically investigated in the presence of two inline square heat sources. Two different heat source boundary conditions are analyzed, namely, case 1 (when one heat source is hot) and case 2 (when two heat sources are hot), using the in-house developed flexible forcing immersed boundary–thermal lattice Boltzmann model. The isotherms, streamlines, local, and surface-averaged Nusselt number distributions are analyzed at ten different vertical eccentric locations of the heat sources for Rayleigh number between 103 and 106. Distinct flow regimes including primary, secondary, tertiary, quaternary, and Rayleigh–Benard cells are observed when the mode of heat transfer is changed from conduction to convection and heat sources eccentricity is varied. For Rayleigh number up to 104, the heat transfer from the enclosure is symmetric for the upward and downward eccentricity of the heat sources. At Rayleigh number greater than 104, the heat transfer from the enclosure is better for downward eccentricity cases that attain a maximum when the heat sources are near the bottom enclosure wall. Moreover, the heat transfer rate from the enclosure in case 2 is nearly twice that of case 1 at all Rayleigh numbers and eccentric locations. The correlations for heat transfer are developed by relating Nusselt number, Rayleigh number, and eccentricity of the heat sources.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3