Computational Framework Development for Heat Transfer Studies in Liquid Metal-Cooled Small-Scale Heat Sinks With Non-Circular Cross Sections

Author:

Pourghasemi Mahyar123,Fathi Nima23

Affiliation:

1. Western New England University Department of Mechanical Engineering, , Springfield, MA 01119 ;

2. Texas A&M University Department of J. Mike Walker’66 Mechanical Engineering, , College Station, TX 77840 ;

3. Texas A&M University Department of Marine Engineering Technology, , Galveston, TX 77553

Abstract

Abstract The present work provides a reliable computational framework to investigate the laminar and turbulent forced convection of sodium and sodium–potassium (Na, NaK) in small-scale heat sinks with hydraulic diameters between 1 mm and 5 mm. Na and NaK flow and heat transfer are studied numerically for a wide range of Reynolds numbers from 600 to 9000 in three sharp-cornered miniature heat sinks with rectangular, pentagonal, and hexagonal cross sections. For a fixed surface area to volume ratio, it is observed that the rectangular minichannel heat sink provides the highest convective heat transfer rates. The rectangular miniature heat sink is shown to provide 280% higher convective heat transfer rates in comparison with the pentagonal heat sink. Moreover, the obtained convective heat transfer coefficients for NaK are almost 20% higher than the ones for Na in the investigated pentagonal heat sink. For the same flow Peclet number in the rectangular and hexagonal heat sinks, both Na and NaK provide nearly identical average Nusselt numbers. However, NaK shows greater local and average Nusselt numbers compared to Na at the same Reynolds number.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On conjugate heat transfer in microchannel heat sinks;International Journal of Thermofluids;2024-05

2. THERMAL-HYDRAULIC ANALYSIS OF BIO-INSPIRED FRACTAL MINIATURE HEAT SINKS FOR MICROELECTRONICS COOLING;Proceeding of 9th Thermal and Fluids Engineering Conference (TFEC);2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3