The Sub-Metered HVAC Implemented for Demand Response Dataset

Author:

Lin Austin J.1ORCID,Lei Shunbo2,Keskar Aditya3,Hiskens Ian1,Johnson Jeremiah X.4,Mathieu Johanna L.1

Affiliation:

1. Electrical and Computer Engineering, University of Michigan , Ann Arbor, MI 48109

2. School of Science and Engineering, Chinese University of Hong Kong , Shenzhen, Shenzhen 518172, China

3. North Carolina Utilities Commission , Raleigh, NC 27603

4. Civil, Construction and Environmental Engineering, North Carolina State University , Raleigh, NC 27695

Abstract

Abstract Closed-loop control of commercial building heating, ventilating, and air conditioning (HVAC) for demand response requires measurements used as feedback to the controllers. Demand response effectiveness is usually measured as a power deviation from baseline, but the building automation system (BAS) does not usually collect power measurements, and whole-building electric meters typically measure power at intervals of 15 min, which may be too slow for some types of demand response. Demand response strategies are sometimes focused on components of building HVAC systems, e.g., the response of supply/return fans to temperature set-point changes, but these components are usually not submetered. Fan power can be estimated from physics-based models leveraging BAS data, e.g., airflow measurements; but our ability to effectively close the loop on these estimates is not clear. In this paper, we introduce a massive dataset that contains both submetered fan power data and BAS data for several building HVAC systems during typical operation and demand response events. Through a case study we show that models leveraging BAS data alone do not provide accurate estimates of fan power during event transients, making it unlikely that closed-loop control of commercial building HVAC components for demand response would be effective using BAS data alone. This demonstrates the value of submetering HVAC components. More broadly, our dataset will enable future research bridging the gap between building control and power systems research.

Funder

Building Technologies Program

Division of Graduate Education

Guangdong Science and Technology Department

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Sub-Metered HVAC Implemented for Demand Response Dataset;Journal of Dynamic Systems, Measurement, and Control;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3