An Alternate Perspective on Modeling and Control of a Flexible Manipulator: Case Study of a Curvature Control Manipulator Dynamics

Author:

Ezeanya Emeka K.1,Barhorst Alan A.1

Affiliation:

1. University of Louisiana at Lafayette Department of Mechanical Engineering, , Lafayette, LA 70503

Abstract

Abstract The flexible and adaptable nature of continuum soft robots makes them applicable to a wide range of operations not easily obtainable with conventional rigid-body robots. Thus, soft robots can be used in various operations such as manipulation tasks, minimally invasive surgery operations, robotic rehabilitation/wearable devices, inspection, and surveillance tasks. Unfortunately, the continuous nature of these robotic systems leads to significant modeling and control challenges. Presently, there are various modeling perspectives. However, a detailed review shows that current models are often characterized by problems such as high computational costs, quasi-static assumptions, imprecise inclusion of boundary conditions, spillover instability, etc. These problems limit the accuracy of the resulting model, requiring more effective modeling and control strategies. Therefore, this paper is aimed at improving the state of the art and science of current models by providing more effective strategies for the problems encountered. In this regard, the dynamic modeling of a two-link tendon-driven flexible manipulator based on hybrid parameter multibody system methodology will be presented to demonstrate these strategies. Using the model, path-planned dynamic controls based on pole placement, linear quadratic regulator, and sliding mode control methods will be implemented for a continuous time-varying path. Also, a comparison of the performance of the control methods, in addition to parametric studies for the optimal tendon connection points, will be presented. Results showed that the benefits of the modeling approach and strategies employed led to a highly accurate, real-time performance for the complex motions of the manipulator system.

Publisher

ASME International

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3