Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers

Author:

Ryu Keun1,Ashton Zachary2

Affiliation:

1. Assistant Professor Department of Mechanical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea e-mail:

2. Global Engineering Core Science, BorgWarner Turbo Systems, Arden, NC 28704 e-mail:

Abstract

Oil-free bearings for automotive turbochargers (TCs) offer unique advantages eliminating oil-related catastrophic TC failures (oil coking, severe bearing wear/seizure, and significant oil leakage, for example), while increasing overall system reliability and reducing maintenance costs. The main objective of the current investigation is to advance the technology of the gas foil bearings (GFBs) for automotive TCs by demonstrating their reliability, durability, and static/dynamic force characteristics desirable in extreme speed and temperature conditions. The paper compares drag friction and on-engine performances of an oil-free TC supported on GFBs against an oil-lubricated commercial production TC with identical compressor and turbine wheels. Extensive coastdown and fast acceleration TC rotor speed tests are conducted in a cold air-driven high-speed test cell. Rotor speed coastdown tests demonstrate that the differences in the identified rotational viscous drag coefficients and drag torques between the oil-free and production TCs are quite similar. In addition, rotor acceleration tests show that the acceleration torque of the oil-free TC rotor, when airborne, is larger than the production TC rotor due to the large mass and moment of inertia of the oil-free TC rotor even though air has lower viscosity than the TC lubricant oil. Separate experiments of the oil-free TC installed on a diesel engine demonstrate the reliable dynamic-forced performance and superior rotor dynamic stability of the oil-free TC over the oil-lubricated TC. The post on-engine test inspection of the oil-free TC test hardware reveals no evidence of significant surface wear between the rotor and bearings, as well as no dimensional changes in the rotor outer surfaces and bearing top foil inner surfaces. The present experimental characterization and verified robustness of the oil-free TC system continue to extend the GFB knowledge database.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference11 articles.

1. Bump-Type Foil Bearings and Flexure Pivot Tilting Pad Bearings for Automotive Oil-Free Turbochargers: Highlights in Rotordynamic Performance;ASME J. Eng. Gas Turbines Power,2016

2. On the Failure of a Gas Foil Bearing: High Temperature Operation Without Cooling Flow;ASME J. Eng. Gas Turbines Power,2013

3. Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil-Free Turbomachinery Applications,2006

4. NASA PS400: A New High Temperature Solid Lubricant Coating for High Temperature Wear Applications,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3