Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid

Author:

Moczulak Bartosz1,Żywica Grzegorz2ORCID,Miąskowski Wojciech1,Kiński Wojciech3,Bagiński Paweł2ORCID

Affiliation:

1. Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11 Str., 10-719 Olsztyn, Poland

2. Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 Str., 80-231 Gdansk, Poland

3. Łukasiewicz Research Network—Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, 02-486 Warsaw, Poland

Abstract

Developing high-speed rotating machines, such as microturbines, requires new solutions for bearing systems. Foil bearings are one of the fastest-growing high-speed bearing technologies. This article presents the results of experimental studies on foil bearings conducted on a test rig reflecting the operating conditions of the target machine. The tested bearings were therefore placed in a chamber filled with a low-boiling medium used as a working fluid in vapour microturbines. The experiments were carried out for several test cycles following a repeatable procedure. To carry out the tests under specific environmental conditions, a measurement cycle according to the developed test procedure and a temperature stabilization system for long-term measurements were proposed. The research involved determining the thermal characteristics of four foil bearing variants and assessing the impact of operating conditions on their wear. Additional research has shown that the operating characteristics are highly dependent not only on the materials and geometry of the bearing but also on the surface roughness of the mating parts. This study is part of ongoing work to select appropriate designs and material packages for foil bearings operating under conditions involving lubricating film formation and heat dissipation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3