Design and Fabrication of a Low-Cost Three-Dimensional Bioprinter

Author:

McElheny Colton1,Hayes Daniel2,Devireddy Ram3

Affiliation:

1. Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803

2. Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA 16802

3. Department of Mechanical Engineering, Louisiana State University, 2508 P.F. Taylor Hall, Baton Rouge, LA 70803 e-mail:

Abstract

Three-dimensional (3D) bioprinting offers innovative research vectors for tissue engineering. However, commercially available bioprinting platforms can be cost prohibitive to small research facilities, especially in an academic setting. The goal is to design and fabricate a low-cost printing platform able to deliver cell-laden fluids with spatial accuracy along the X, Y, and Z axes of 0.1 mm. The bioprinter consists of three subassemblies: a base unit, a gantry, and a shuttle component. The platform utilizes four stepper motors to position along three axes and a fifth stepper motor actuating a pump. The shuttle and gantry are each driven along their respective horizontal axes via separate single stepper motor, while two coupled stepper motors are used to control location along the vertical axis. The current shuttle configuration allows for a 5 mL syringe to be extruded within a work envelope of 180 mm × 160 mm × 120 mm (X, Y, Z). The shuttle can easily be reconfigured to accommodate larger volume syringes. An attachment for a laser pen is located such that printing material may be light-activated pre-extrusion. Positional fidelity was established with calipers possessing a resolution to the nearest hundredth millimeter. The motors associated with the X and Y axes were calibrated to approximately 0.02 mm per motor impulse. The Z axis has a theoretical step distance of ∼51 nm, generating 0.04% error over a 10 mm travel distance. The A axis, or pump motor, has an impulse distance of 0.001 mm. The volume extruded by a single impulse is dictated by the diameter of the syringe used. With a 5 mL syringe possessing an inner diameter of 12.35 mm, the pump pushes as little as 0.119 μL. While the Z axis is tuned to the highest resolution settings for the motor driver, the X, Y, and A axes can obtain higher or lower resolution via physical switches on the motor drivers.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3