Development of an affordable extrusion 3D bioprinter equipped with a temperature-controlled printhead

Author:

Garciamendez-Mijares Carlos Ezio,Guerra-Alvarez Gilberto Emilio,Sánchez-Salazar1,4 Mónica Gabriela,García-Rubio Andrés,García-Martínez Germán,Mertgen Anne-Sophie,Ceballos-González Carlos Fernando,Bolivar-Monsalve Edna Johana,Shrike Zhang Yu,Santiago Grissel Trujillo-de,Alvarez Mario Moisés

Abstract

Bioprinters show great promise as enablers of regenerative medicine and other biomedical engineering applications. In this work, we present a flexible and cost-effective design for a do-it-yourself bioprinter capable of printing/bioprinting gelatin methacryloyl (GelMA) and Pluronic constructs at flow rates of 0.05–0.1 mL/min and effective resolutions of 500–700 μm. The most distinctive feature of this bioprinter is its ability to control the rheology of bioinks simply by adjusting the extrusion temperature during printing. This is achieved by circulating temperature-controlled water within the printhead, which is engineered as a single 3D-printed component consisting of a water-recirculation jacket surrounding the ink/bioink cartridge. The flexibility to circulate either warm or cold water allows the system to be adapted according to the needs dictated by the bioink composition. Herein, we demonstrate the ability to control the printability of GelMA or Pluronic fibers by decreasing or increasing the temperature, respectively, thereby regulating its viscosity. In addition, any commercial needle with a Luer lock can be incorporated into the printhead, allowing the easy fabrication of fibers of different diameters with a single printhead. We showed that our bioprinter is capable of printing simple 2D constructs with high fidelity (i.e., lines of GelMA with a thickness of ~522 ± 36.83 μm can be printed at linear speeds of 100 mm min−1) and 3D constructs composed of as many as five layers of cell-laden 5% GelMA. We also demonstrated that C2C12 cells bioprinted through needle tips (300 μm in diameter) exhibit adequate post-printing viability (~90%), as well as spreading after 7 days of culture. The presentation of this bioprinter may contribute appreciably to the expansion of bioprinter use due to its low overall cost of manufacture, flexibility and open-source character, amenability to modification and adaptation for use with different 3D-printed printheads, and ability to bioprint using GelMA.

Publisher

AccScience Publishing

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3