Plug‐and‐Play Multimaterial Chaotic Printing/Bioprinting to Produce Radial and Axial Micropatterns in Hydrogel Filaments

Author:

Ceballos‐González Carlos Fernando1,Bolívar‐Monsalve Edna Johana1,Quevedo‐Moreno Diego Alonso2,Chávez‐Madero Carolina23,Velásquez‐Marín Silvana1,Lam‐Aguilar Li Lu1,Solís‐Pérez Óscar Emmanuel1,Cantoral‐Sánchez Ariel1,Neher Mara1,Yzar‐García Estefanía23,Zhang Yu Shrike3,Gentile Carmine4,Boccaccini Aldo R.5,Alvarez Mario Moisés12ORCID,Trujillo‐de Santiago Grissel12ORCID

Affiliation:

1. Centro de Biotecnología‐FEMSA, Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Monterrey Nuevo León 64849 México

2. Departamento de Ingeniería Mecatrónica y Eléctrica Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Monterrey Nuevo León 64849 México

3. Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA

4. School of Biomedical Engineering University of Technology Sydney Sydney New South Wales 2000 Australia

5. Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg 91058 Erlangen Germany

Abstract

AbstractNature abounds with micro‐architected materials containing layered multi‐material patterns that often transition within the very same monolithic piece. Fabricating these complex materials using current technologies is challenging. Multimaterial chaotic printing is presented—an extrusive printing method based on the use of chaotic advection—that can fabricate microstructured hydrogels with well‐defined multimaterial and multilayered micropatterns. Printheads containing internal Kenics static mixing (KSM) elements and top‐ and lateral‐positioned inlets are used to produce a wide repertoire of multilayered hydrogel filaments. In this plug‐and‐play system, the radial and axial micropatterns can be designed ad hoc by defining the printhead configuration (i.e., the number of KSM elements and inlets, and the inlet positions) and the flow program (i.e., activation/deactivation of the ink‐flow through each inlet). Computational fluid dynamics simulations closely predict the microstructure obtained by a given printhead configuration. The application of this platform is illustrated for easy fabrication of fibers with radial microgradients, bacterial ecosystems, structured emulsions, micro‐channeled hydrogel filaments, a pre‐vascularized tumor niche model, and skeletal muscle‐like tissues with axial and radial transitions of bioactive glass compartments. It is envisioned that multimaterial chaotic printing will be a valuable addition to the toolbox of additive manufacturing for the rational fabrication of advanced materials.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3