Analytical Model to Estimate the Downhole Casing Wear Using the Total Wellbore Energy

Author:

Kumar Aniket,Nwachukwu Joseph1,Samuel Robello2

Affiliation:

1. University of Houston Houston, TX 77004

2. Halliburton Fellow Halliburton, Houston, TX 77032

Abstract

The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from the casing-wear downhole. Much work has been done to quantify and estimate wear in casing; however, the results of such predictions have been mixed. While the locations of critical-wear areas along the casing string have been predicted fairly accurately, quantifying the actual amount of casing wear has been a magnitude off. A mathematical model that describes this casing wear in terms of the total wellbore energy has been developed and used to estimate the depth of the wear groove and the wear volume downhole. The wellbore energy provides a mathematical criterion to quantify the borehole quality and incorporates the parameters, borehole curvature, and the wellbore torsion. The casing wear observed downhole is also an integral function of these two parameters. Hence, a combined “wear-energy” model has been proposed to estimate the casing wear in curved sections of the wellbore that have the drill string lying on its low side. The fundamental assumption of this model is that the volume worn away from the casing wall is proportional to the work done by friction on its inner wall by the tool joints only. It also assumes that the primary mechanism for casing wear is the rotation of the drill string, and the wear caused during tripping is insignificant. The borehole torsion models of wellbore trajectory, namely spatial-arc, natural-curve, cylindrical-helix, and constant-tool face, have been incorporated separately to enhance the accuracy of estimating the wear volume downhole. The wear-energy model for a detailed analysis of a practical example using real-time well survey data will be presented. Wear zones along the wellbore have been identified using a mathematical criterion of the “contact zone parameter.” The wear-groove depths for each contact zone along with an equivalent average wear for the curved section of the wellbore have been estimated. The wear volumes predicted by the various curvature and torsion models of wellbore energy have been graphically studied. The wellbore torsion has been found to significantly impact the casing-wear downhole.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena;ASME J. Energy Resour. Technol.,2008

2. Drilling Action of Roller-Cone Bits: Modeling and Experimental Validation;ASME J. Energy Resour. Technology,2010

3. Model Development of Torsional Drillstring and Investigating Parametrically the Stick Slips Influencing Factors;ASME J. Energy Resour. Technol.,2013

4. Modeling and Analysis of Drillstring Vibration in Riserless Environment;ASME J. Energy Resour. Technol.,2013

5. Analysis of Postbuckling Drillstring Vibrations in Rotary Drilling of Extended Reach Wells;ASME J. Energy Resour. Technol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3