Affiliation:
1. e-mail:
2. Institute of Petroleum Engineering, Clausthal University of Technology, Agricola Str. 10, Clausthal-Zellerfeld, Niedersachen 38678, Germany
Abstract
Drillstring vibration is one of the limiting factors maximizing drilling performance. Torsional vibrations/oscillations while drilling is one of the sever types of drillstring vibration which deteriorates the overall drilling performance, causing damaged bit, failure of bottom-hole assembly, overtorqued tool joints, torsional fatigue of drillstring, etc. It has been identified that the wellbore-drillstring interaction and well face-drill bit interaction are the sources of excitation of torsional oscillations. Predrilling analysis and real time analysis of drillstring dynamics is becoming a necessity for drilling oil/gas or geothermal wells in order to optimize surface drilling parameters and to reduce vibration related problems. It is very challenging to derive the drillstring model considering all modes of vibrations together due to the complexity of the phenomenon. This paper presents the mathematical model of a torsional drillstring based on nonlinear differential equations which are formulated considering drillpipes and bottom-hole assembly separately. The bit–rock interaction is represented by a nonlinear friction forces. Parametric study has been carried out analyzing the influence of drilling parameters such as surface rotations per minute (RPM) and weight-on-bit (WOB) on torsional oscillations. Influences of properties of drillstring like stiffness and inertia, which are most of the times either unknown or insufficiently studied during modeling, on torsional oscillation/stick-slip is also studied. The influences of different rock strength on rate of penetration (ROP) considering the drilling parameters have also been studied. The results show the same trend as observed in fields.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献