Patient-Robot-Therapist Collaboration Using Resistive Impedance Controlled Tele-Robotic Systems Subjected to Time Delays

Author:

Sharifi Mojtaba12,Salarieh Hassan3,Behzadipour Saeed3,Tavakoli Mahdi2

Affiliation:

1. Department of Mechanical Engineering, Sharif University of Technology, Azadi Street, Tehran 11155-9567, Iran;

2. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada e-mail:

3. Department of Mechanical Engineering, Sharif University of Technology, Azadi Street, Tehran 11155-9567, Iran e-mail:

Abstract

In this paper, an approach to physical collaboration between a patient and a therapist is proposed using a bilateral impedance control strategy developed for delayed tele-robotic systems. The patient performs a tele-rehabilitation task in a resistive virtual environment with the help of online assistive forces from the therapist being provided through teleoperation. Using this strategy, the patient's involuntary hand tremors can be filtered out and the effort of severely impaired patients can be amplified in order to facilitate their early engagement in physical tasks. The response of the first desired impedance model is tracked by the master robot (interacting with the patient), and the master trajectory plus a deviation as the response of the second impedance model is tracked by the slave robot (interacting with the therapist). Note that the first impedance model is a virtual mass-damper-spring system that has a response trajectory to the combination of patient and therapist forces. Similarly, the second impedance model is a virtual mass-damper-spring system that generates the desired slave–master deviation trajectory as its response to the therapist force. Transmitted signals through the communication channels are subjected to time delays, which exist in home-based rehabilitation (i.e., tele-rehabilitation). Tracking of the impedance models responses in the presence of modeling uncertainties is achieved by employing a nonlinear bilateral adaptive controller and proven using a Lyapunov analysis. The stability of delayed teleoperation system is also proven using the absolute stability criterion. The proposed control method is experimentally evaluated for patient–therapist collaboration in resistive/assistive tasks. In these experiments, a healthy human operator simulates a poststroke patient behavior during the interaction with the master robot.

Publisher

ASME International

Subject

Mechanical Engineering

Reference49 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3