Dynamic Modeling and Simulation of Flexible Robots With Prismatic Joints

Author:

Pan Ye-Chen1,Scott R. A.1,Ulsoy A. Galip1

Affiliation:

1. Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, MI 48109-2125

Abstract

A dynamic model for flexible manipulators with prismatic joints is presented in Part I of this study. Floating frames following a nominal rigid body motion are introduced to describe the kinematics of the flexible links. A Lagrangian approach is used in deriving the equations of motion. The work done by the rigid body axial force through the axial shortening of the link due to transverse deformations is included in the Lagrangian function. Kinematic constraint equations are used to describe the compatibility conditions associated with revolute joints and prismatic joints, and incorporated into the equations of motion by Lagrange multipliers. The small displacements due to the flexibility of the links are then discretized by a displacement based finite element method. Equations of motion are derived for the cases of prescribed rigid body motion as well as prescribed joint torques/forces through application of Lagrange’s equations. The equations of motion and the constraint equations result in a set of differential algebraic equations. A numerical procedure combining a constraint stabilization method and a Newmark direct integration scheme is then applied to obtain the system response. An example, previously treated in the literature, is presented to validate the modeling and solution methods used in this study.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Mathematical Methods for Flexible Robot Dynamics Modeling and Simulation;Machine Learning and Mechanics Based Soft Computing Applications;2023

2. Forward and Inverse Kinematics Analysis of SMA Spring-Driven Flexible Manipulator;Lecture Notes in Electrical Engineering;2021-09-24

3. Design, Modeling and Motion Control of a Multi-Segment SMA Driven Soft Robotic Manipulator;2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2021-07-12

4. A novel mathematical approach for finite element formulation of flexible robot dynamics;Mechanics Based Design of Structures and Machines;2020-09-18

5. New Analytical Model Used in Finite Element Analysis of Solids Mechanics;Mathematics;2020-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3