Influence of Injection Angle and Valve Opening Manner on Mixing Performance in a Large-Bore Port Fuel Injection Compressed Natural Gas-Fueled Engine

Author:

Wang Tianbo1,Chang Siqin1,Liu Liang1

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China e-mail:

Abstract

One new kind of gas injection devices (GIDs), with moving-coil electromagnetic linear actuator (MCELA) and mushroom-type poppet valve, was projected to inject sufficient compressed natural gas (CNG) to a large-bore port fuel injection (PFI) engine. It had larger mass flow rate and better controllability than conventional GID. And the transient computational fluid dynamics (CFD) engine model incorporating the GID's motion was established to analyze the effects of the GID injection angle and poppet valve opening manner on the mixing homogeneity in the intake port, and finally, the in-cylinder mixing performance and gas movement intensity were compared. The results indicate that with the increasing of injection angle, the mixing homogeneity in the near-field injection location of intake port will be better, and the time when fuel starts to get into cylinder will be later. At ignition time, the injection angles 60 deg, 90 deg, and 120 deg show better in-cylinder mixing performance, while 150 deg has the worst. The pull-open GID injects more momentum to the intake port than the push-open one, and the mixing degree both in the intake port and cylinder is higher.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3