Numerical Comparative Study on the In-Cylinder Mixing Performance of Port Fuel Injection and Direct Injection Gas-Fueled Engine

Author:

Wang TianboORCID,Zhang LanchunORCID,Li Li,Wu Jiahui,Wang Hongchen

Abstract

In recent decades, research on alternative fuel engines is becoming more and more popular. Compressed natural gas (CNG) has the advantages of abundant reserves and a lower cost. It can reduce vehicle emissions relatively quickly and has little impact on the entire transportation infrastructure. As the fourth generation of a gas fuel supply method, gas fuel direct injection (DI) technology can effectively avoid volumetric efficiency reduction and power reduction problems of the port fuel injection (PFI) method. However, the former’s mixing path and duration are shortened greatly, which often leads to poor mixing uniformity. In order to improve the in-cylinder mixing uniformity, the in-cylinder mixing process of the CNG-fueled engine is taken as the research object in this study. The computational fluid dynamics (CFDs) models of the mixing process for the PFI and DI modes are established, and their mixing uniformities are compared. Besides, based on the authors’ previous research, the influence mechanism of the piston crown shape and fuel injection angle on the mixing process of the CNG DI engine is explored. The results show that the probability distribution frequency (PDF) of the best mixture concentration region (BMCR) is as high as 72% for the PFI mode, which is much higher than for the DI mode. The shorter jet impingement distance of the flat top piston leads to higher turbulent kinetic energy (TKE) intensity, and the in-cylinder mixing uniformity will be improved. When gas fuel is injected into an area with a higher in-cylinder TKE, the average in-cylinder TKE will be higher, and the in-cylinder mixture will be more homogeneous.

Funder

National Natural Science Foundation of China

Natural Science Research Project of Higher Education Institutions in Jiangsu Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3