Heat Transfer Coefficient Measurements on the Film-Cooled Pressure Surface of a Transonic Airfoil

Author:

Kodzwa Paul M.1,Eaton John K.2

Affiliation:

1. e-mail:

2. Department of Mechanical Engineering, Flow Physics and Computation Division, Stanford University, Stanford, CA 94305

Abstract

This paper presents isoenergetic temperature and steady-state film-cooled heat transfer coefficient measurements on the pressure surface of a modern, highly cambered transonic airfoil. A single passage model simulated the idealized two-dimensional flow path between blades in a modern transonic turbine. This set up offered a simpler construction than a linear cascade but produced an equivalent flow condition. Furthermore, this model allowed the use of steady-state, constant surface heat fluxes. We used wide-band thermochromic liquid crystals (TLCs) viewed through a novel miniature periscope system to perform high-accuracy (±0.2 °C) thermography. The peak Mach number along the pressure surface was 1.5, and maximum turbulence intensity was 30%. We used air and carbon dioxide as injectant to simulate the density ratios characteristic of the film cooling problem. We found significant differences between isoenergetic and recovery temperature distributions with a strongly accelerated mainstream and detached coolant jets. Our heat transfer data showed some general similarities with lower-speed data immediately downstream of injection; however, we also observed significant heat transfer attenuation far downstream at high blowing conditions. Our measurements suggested that the momentum ratio was the most appropriate variable to parameterize the effect of injectant density once jet lift-off occurred. We noted several nonintuitive results in our turbulence effect studies. First, we found that increased mainstream turbulence can be overwhelmed by the local augmentation of coolant injection. Second, we observed complex interactions between turbulence level, coolant density, and blowing rate with an accelerating mainstream.

Publisher

ASME International

Subject

Mechanical Engineering

Reference40 articles.

1. A Review of Shaped Hole Turbine Film Cooling Technology;J. Heat Transfer,2005

2. Analysis of Film Cooling and Full-Coverage Film Cooling of Gas Turbine Blades;J. Eng. Gas Turbines Power,1984

3. An Experimental Study of Film Cooling in a Rotating Transonic Turbine;J. Turbomach.,1994

4. Mukerji, D., Eaton, J., Moffat, R., and Elkins, C., 1999, “A 2-D Numerical Study of the Heat-Island Effect for Button-Type Heat Flux Gages,” Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, Paper No. AJTE99/6186.

5. Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distribution on a Gas Turbine Airfoil;J. Turbomach.,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3