Evolution and Turbulence Properties of Self-Sustained Transversely Oscillating Flow Induced by Fluidic Oscillator

Author:

Fung Huang Rong1,Tong Chang Kuo2

Affiliation:

1. National Taiwan University of Science and Technology, Taipei, Taiwan 10672, Republic of China

2. Mingchi University of Technology, Taipei, Taiwan 24306, Republic of China

Abstract

The evolution process and turbulence properties of a transversely oscillating flow induced by a fluidic oscillator are studied in a gravity-driven water tunnel. A planar jet is guided to impinge a specially designed crescent surface of a target blockage that is enclosed in a cavity of a fluidic oscillator. The geometric configuration of the cavity transforms the inherent stability characteristics of the jet from convective instability to absolute instability, so that the jet precedes the persistent back and forth swinging in the cavity. The swinging jet is subsequently directed through two passages and issued alternatively out of the fluidic oscillator. Two short plates are installed near the exits of the alternatively issuing pulsatile jets to deflect the jets toward the central axis. The deflected jets impinge with each other and form a pair of counter-rotating vortices in the near wake of the oscillator with a stagnation point at the impingement point. The stagnation point of the counter-rotating vortex pair moves back and forth transversely because of the phase difference existing between the two issued jets. The merged flow evolving from the counter-rotating vortices formed by the impingement of the two pulsatile jets therefore presents complex behavior of transverse oscillation. The topological models corresponding to the flow evolution are constructed to illustrate the oscillation process of the oscillating flow. Significant momentum dispersion and large turbulence intensity are induced by the transverse oscillation of the merged flow. The statistical turbulence properties show that the Lagrangian integral time and length scales of the turbulence eddies (the fine-scale structure) produced in the oscillating flow are drastically reduced.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3