Combined Airfoil and Snubber Design Optimization of Turbine Blades With Respect to Friction Damping

Author:

Hüls Matthias1,Scheidt Lars Panning-von2,Wallaschek Jörg2

Affiliation:

1. Siemens AG, Mellinghofer Straße 55, Mülheim a. d. Ruhr 45473, Germany e-mail:

2. Institute of Dynamics and Vibration Research, Leibniz University Hannover, Hannover 30167, Germany e-mail:

Abstract

A major concern for new generations of large turbine blades is forced and self-excited (flutter) vibrations, which can cause high-cycle fatigue (HCF). The design of friction joints is a commonly applied strategy for systematic reduction of resonance amplitudes at critical operational conditions. In this paper, the influence of geometric blade design parameters onto the damped system response is investigated for direct snubber coupling. A simplified turbine blade geometry is parametrized and a well-proven reduced-order model for turbine blade dynamics under friction damping is integrated into a 3D finite element tool-chain. The developed process is then used in combination with surrogate modeling to predict the effect of geometric design parameters onto the vibrational characteristics. As such, main and interaction effects of design variables onto static normal contact force and resonance amplitudes are determined for a critical first bending mode. Parameters were found to influence the static normal contact force based on their effect on elasticity of the snubber, torsional stiffness of the airfoil and free blade untwist. The results lead to the conclusion that geometric design parameters mainly affect the resonance amplitude equivalent to their influence on static normal contact force in the friction joint. However, it is demonstrated that geometric airfoil parameters influence blade stiffness and are significantly changing the respective mode shapes, which can lead to lower resonance amplitudes despite an increase in static contact loads. Finally, an evolutionary optimization is carried out and novel design guidelines for snubbered blades with friction damping are formulated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of Airfoil Blend Limits With As-Manufactured Geometry Finite Element Models;Journal of Engineering for Gas Turbines and Power;2022-01-03

2. Application of Tuned Vibration Absorber Concept to Blisk Ring Dampers: A Nonlinear Study;Journal of Engineering for Gas Turbines and Power;2019-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3