Analysis of the Effect of Multi-Row and Multi-Passage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration: Part 2 — Effects of Additional Structural Mistuning

Author:

Gross Johann1,Krack Malte1,Schoenenborn Harald2

Affiliation:

1. University of Stuttgart, Stuttgart, Germany

2. MTU Aero Engines AG, Munich, Germany

Abstract

The prediction of aerodynamic blade forcing is a very important topic in turbomachinery design. Usually, the wake from the upstream blade row and the potential field from the downstream blade row are considered as the main causes for excitation, which in conjunction with relative rotation of neighboring blade rows, give rise to dynamic forcing of the blades. In addition to those two mechanisms so-called Tyler-Sofrin (or scattered or spinning) modes, which refer to the acoustic interaction with blade rows further up- or downstream, may have a significant impact on blade forcing. In particular, they lead to considerable blade-to-blade variations of the aerodynamic loading. In part 1 of the paper a study of these effects is performed on the basis of a quasi 3D multi-row and multi-passage compressor configuration. Part 2 of the paper proposes a method to analyze the interaction of the aerodynamic forcing asymmetries with the already well-studied effects of random mistuning stemming from blade-to-blade variations of structural properties. Based on a finite element model of a sector, the equations governing the dynamic behavior of the entire bladed disk can be efficiently derived using substructuring techniques. The disk substructure is assumed as cyclically symmetric, while the blades exhibit structural mistuning and linear aeroelastic coupling. In order to avoid the costly multi-stage analysis, the variation of the aerodynamic loading is treated as an epistemic uncertainty, leading to a stochastic description of the annular force pattern. The effects of structural mistuning and stochastic aerodynamic forcing are first studied separately and then in a combined manner for a blisk of a research compressor without and with aeroelastic coupling.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3