Effect of Tumor Volume on Drug Delivery in Heterogeneous Vasculature of Human Brain Tumors

Author:

Bhandari Ajay1,Bansal Ankit2,Jain Rishav34,Singh Anup56,Sinha Niraj1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India e-mail:

2. Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247677, India e-mail:

3. Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India;

4. Engineering and Design Section, Mitsubishi Heavy Industries Compressor Corporation, Hiroshima 7330036, Japan e-mail:

5. Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India;

6. Department of Biomedical Engineering, All Indian Institute of Medical Sciences, Delhi 110016, India e-mail:

Abstract

Drug distribution in tumors is strongly dependent on tumor biological properties such as tumor volume, vasculature, and porosity. An understanding of the drug distribution pattern in tumors can help in enhancing the effectiveness of anticancer treatment. A numerical model is employed to study the distribution of contrast agent in the heterogeneous vasculature of human brain tumors of different volumes. Dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) has been done for a number of patients with different tumor volumes. Leaky tracer kinetic model (LTKM) is employed to obtain perfusion parameters from the DCE-MRI data. These parameters are used as input in the computational fluid dynamics (CFD) model to predict interstitial fluid pressure (IFP), interstitial fluid velocity (IFV), and distribution of the contrast agent in different tumors. Numerical results demonstrate that the IFP is independent of tumor volume. On the other hand, the IFV increases as the tumor volume increases. Further, the concentration of contrast agent also increases with the tumor volume. The results obtained in this work are in line with the experimental DCE-MRI data. It is observed that large volume tumors tend to retain a higher concentration of contrast agent for a longer duration of time because of large extravasation flux and slow washout as compared to smaller tumors. These results may be qualitatively extrapolated to chemotherapeutic drug delivery, implying faster healing in large volume tumors. This study helps in understanding the effect of tumor volume on the treatment outcome for a wide range of human tumors.

Funder

Science and Engineering Research Board

Indian Institute of Technology Kanpur

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3