Predicting intratumoral fluid pressure and liposome accumulation using physics informed deep learning

Author:

Meaney Cameron,Stapleton Shawn,Kohandel Mohammad

Abstract

AbstractLiposome-based anticancer agents take advantage of the increased vascular permeability and transvascular pressure gradients for selective accumulation in tumors, a phenomenon known as the enhanced permeability and retention(EPR) effect. The EPR effect has motivated the clinical use of nano-therapeutics, with mixed results on treatment outcome. High interstitial fluid pressure (IFP) has been shown to limit liposome drug delivery to central tumour regions. Furthermore, high IFP is an independent prognostic biomarker for treatment efficacy in radiation therapy and chemotherapy for some solid cancers. Therefore, accurately measuring spatial liposome accumulation and IFP distribution within a solid tumour is crucial for optimal treatment planning. In this paper, we develop a model capable of predicting voxel-by-voxel intratumoral liposome accumulation and IFP using pre and post administration imaging. Our approach is based on physics informed machine learning, a novel technique combining machine learning and partial differential equations. through application to a set of mouse data and a set of synthetically-generated tumours, we show that our approach accurately predicts the spatial liposome accumulation and IFP for an individual tumour while relying on minimal information. This is an important result with applications for forecasting tumour progression and designing treatment.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference24 articles.

1. Milosevic, M. et al. Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res.61, 96 (2001).

2. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Dis. 10, 417–427. https://doi.org/10.1038/nrd3455 (2011).

3. Gabizon, A. A. Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Can. Res. 52, 891–896 (1992).

4. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnol.2, 751–760. https://doi.org/10.1038/nnano.2007.387 (2007). Number: 12 Publisher: Nature Publishing Group.

5. Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–743 (1999).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3