Differential Quadrature Method for Stability and Sensitivity Analysis of Neutral Delay Differential Systems

Author:

Dong Wei1,Ding Ye1,Zhu Xiangyang1,Ding Han1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

This work develops a computationally efficient stability analysis method for the neutral delay differential systems. This method can be also conveniently applied for the optimal parameter tuning of related control systems. To facilitate this development, at each sampling grid point, the time derivative of the concerned differential system is first estimated by the differential quadrature method (DQM). The neutral delay differential system is then discretized as numbers of algebraic equations in the concerned duration. By combining the obtained discretized algebraic equations, the transition matrix of the two adjacent delay time durations can be explicitly established. Subsequently, the stability boundary is estimated, and the optimal parameters for the controller design are evaluated by searching the global minimum of the spectral radius of the transition matrix. In order to solve such optimization problems with the gradient descent algorithms, this work also analytically formulates the gradient of spectral radius of transition matrix with respect to the concerned parameters. In addition, a strong stability criterion is introduced to ensure better robustness. Finally, the proposed method is extensively verified by numeric examples, and the proposed differential quadrature method demonstrates good accuracy in both parameter tuning and stability region estimation for the neutral delay differential systems.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3