Author:
Welch Torrence D. J.,Ting Lena H.
Abstract
Although feedback models have been used to simulate body motions in human postural control, it is not known whether muscle activation patterns generated by the nervous system during postural responses can also be explained by a feedback control process. We investigated whether a simple feedback law could explain temporal patterns of muscle activation in response to support-surface translations in human subjects. Previously, we used a single-link inverted-pendulum model with a delayed feedback controller to reproduce temporal patterns of muscle activity during postural responses in cats. We scaled this model to human dimensions and determined whether it could reproduce human muscle activity during forward and backward support-surface perturbations. Through optimization, we found three feedback gains (on pendulum acceleration, velocity, and displacement) and a common time delay that allowed the model to best match measured electromyographic (EMG) signals. For each muscle and each subject, the entire time courses of EMG signals during postural responses were well reconstructed in muscles throughout the lower body and resembled the solution derived from an optimal control model. In ankle muscles, >75% of the EMG variability was accounted for by model reconstructions. Surprisingly, >67% of the EMG variability was also accounted for in knee, hip, and pelvis muscles, even though motion at these joints was minimal. Although not explicitly required by our optimization, pendulum kinematics were well matched to subject center-of-mass (CoM) kinematics. Together, these results suggest that a common set of feedback signals related to task-level control of CoM motion is used in the temporal formation of muscle activity during postural control.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献