Numerical Evaluation of the Optical Properties of Encapsulated Phase Change Particles for Thermotropic Materials

Author:

Gladen Adam1,Mantell Susan1,Davidson Jane1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, 111 Church Street S.E., Minneapolis, MN 55455 e-mail:

Abstract

Phase change thermotropic materials have been proposed as a low cost method to provide passive overheat protection for polymer solar thermal absorbers. One challenge to their development is control of the size of the phase change particles dispersed within the matrix. Here we explore encapsulation as a means to resolve this challenge with a focus on the selection of materials, including the encapsulating shell, to achieve desirable optical behavior. Hydroxystearic acid (HSA) particles in a matrix of poly(methyl methacrylate) (PMMA) is down selected from candidate materials based on its optical properties and the melt temperature of the dispersed phase. The optical properties (normal-hemispherical transmittance, reflectance, and absorptance) as a function of the properties of the encapsulation shell and the particle volume fraction are predicted at a wavelength of 589 nm using a Monte Carlo ray tracing model. A range of shell relative refractive indices, from 0.95 to 1, and thicknesses, up to 35 nm, can be employed to achieve greater than 80% transmittance in the clear state and greater than 50% reflectance in the translucent state.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference81 articles.

1. Polymeric Materials for Solar Thermal Applications, Solar Heating & Cooling Program, International Energy Agency (IEA);IEA Task 39,2014

2. Low-Cost Solar Water Heating Research and Development Roadmap,2012

3. Burch, J. D., 2006, “Polymer-Based Solar Thermal Systems: Past, Present and Potential Products,” Proceedings of the 64th Annual Technical Conference and Exhibition, Society of Plastic Engineers, Charlotte, NC, pp. 7–11.

4. CFD Modeling of a Polymer Solar Collector;Renewable Energy,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3