A review of advanced architectural glazing technologies for solar energy conversion and intelligent daylighting control

Author:

Liu Xiao,Wu YupengORCID

Abstract

AbstractEfficient management of solar radiation through architectural glazing is a key strategy for achieving a comfortable indoor environment with minimum energy consumption. Conventional glazing consisting of a single or multiple glass pane(s) exhibits high visible light transmittance and solar heat gain coefficient, which can be a double-edged sword, i.e., it allows sufficient sunlight to enter the building interior space for passive heating and lighting; on the other hand, it can cause glare discomfort and large cooling energy consumption. Among the various advanced glazing technologies being developed, Building Integrated Photovoltaic (BIPV) glazing has a prominent position due to its ability to reduce cooling load and visual discomfort while simultaneously generating electricity from sunlight. Recent years have witnessed remarkable advances in low-concentration optics such as Dielectric based Compound Parabolic Concentrators (DiCPCs), with a growing interest in the development of Building Integrated Concentrating Photovoltaic (BICPV) glazing to improve light harvesting and electric power output. One of the challenges faced by traditional BIPV glazing systems is the lack of dynamic control over daylight and solar heat transmission to cope with variations in weather conditions and seasonal heating/cooling demands of buildings. A promising solution is to integrate an optically switchable smart material into a BIPV glazing system, which enables dynamic daylighting control in addition to solar power conversion. Thermotropic (TT) hydrogel materials such as poly(N-isopropylacrylamide) (PNIPAm) and Hydroxypropyl Cellulose (HPC) are potential candidates for hybrid BIPV smart glazing applications, due to their unique features such as high visible transparency (in the clear state), strong light-scattering capability (in the translucent state) and large solar energy modulation. This paper reviews various types of electricity-generating glazing technologies including BIPV glazing and BICPV glazing, as well as smart glazing technologies with a particular focus on TT hydrogel integrated glazing. The characteristics, benefits and limitations of hybrid BIPV smart glazing are also evaluated. Finally, the challenges and research opportunities in this emerging field are discussed.

Funder

the Engineering and Physical Sciences Research Council, UK

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3