Affiliation:
1. 1495 E 100 S SALT LAKE CITY, UT 84112
2. Department of Mechanical Engineering 1495 E. 100 S., MEK 1550 Salt Lake City, UT 84112
3. 50 S. Central Campus Drive Salt Lake City, UT 84112
Abstract
Abstract
In clinical practice, therapeutic and diagnostic endoluminal procedures of the human body often use a scope, catheter, or passive pill-shaped camera. Unfortunately, such procedures in the circulatory system and gastrointestinal tract are often uncomfortable, invasive, and require the patient to be sedated. With current methods, regions of the body are often inaccessible to the clinician. Herein, a magnetically-actuated soft endoluminal inchworm robot that may extend clinicians' ability to reach further into the human body and practice new procedures is described, modeled, and analyzed. A detailed locomotion model is proposed that takes into account the elastic deformation of the robot and its interactions with the environment. The model is validated with in vitro and ex vivo physical experiments and is shown to capture the robot's gait characteristics through a lumen. Utilizing dimensional analysis, the effects of the mechanical properties and design variables on the robot's motion are investigated further to advance the understanding of this endoluminal robot concept.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献