Magnetically-Actuated Endoluminal Soft Robot With Electroactive Polymer Actuation for Enhanced Gait Performance

Author:

Steiner Jake A.1,Nagel William S.2,Leang Kam K.1

Affiliation:

1. University of Utah Dynamic Autonomous Robotics Lab, Department of Mechanical Engineering, , Salt Lake City, UT 84112

2. Widener University Department of Robotics Engineering, , Chester, PA 19013

Abstract

Abstract Endoluminal devices are indispensable in medical procedures in the natural lumina of the body, such as the circulatory system and gastrointestinal tract. In current clinical practice, there is a need for increased control and capabilities of endoluminal devices with less discomfort and risk to the patient. This paper describes the detailed modeling and experimental validation of a magneto-electroactive endoluminal soft (MEESo) robot concept that combines magnetic and electroactive polymer (EAP) actuation to improve the utility of the device. The proposed capsule-like device comprises two permanent magnets with alternating polarity connected by a soft, low-power ionic polymer-metal composite (IPMC) EAP body. A detailed model of the MEESo robot is developed to explore quantitatively the effects of dual magneto-electroactive actuation on the robot’s performance. It is shown that the robot’s gait is enhanced, during the magnetically-driven gait cycle, with IPMC body deformation. The concept is further validated by creating a physical prototype MEESo robot. Experimental results show that the robot’s performance increases up to 68% compared to no IPMC body actuation. These results strongly suggest that integrating EAP into the magnetically-driven system extends the efficacy for traversing tract environments.

Funder

Division of Emerging Frontiers in Research and Innovation

Office of International Science and Engineering

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3