Mechanical Degradation Mechanism of Membrane Electrode Assemblies in Buckling Test Under Humidity Cycles

Author:

Uchiyama Tomoaki1,Kato Manabu,Ikogi Yoshihiro,Yoshida Toshihiko2

Affiliation:

1. e-mail:

2. Toyota Motor Corporation, Fuel Cell System Development Div., R&D Group 1, 1200, Mishuku, Susono, Shizuoka 410-1193, Japan

Abstract

Membrane electrode assembly (MEA) buckling tests in microscopic clearances under humidity cycles and numerical analyses by finite element method (FEM) were conducted. The NR211 (Dupont, 25-μm thickness, equivalent weight (EW) = 1100) sandwiched between catalyst layers (CLs) was used as the MEA. Based on tensile tests of the NR211 and NR211-CL and FEM simulation of tensile tests, the Young’s modulus and yield point of CL were estimated. While the CL had a higher Young’s modulus than the NR211 in water vapor, the CL indicated a lower Young’s modulus than the NR211 in liquid water at 80 °C. The buckling tests in microscopic diameter of 200 μm in polyimide film were carried out. The heights of bulge in the NR211 and NR211-CL after five humidity cycles were measured with a laser microscope. The height of the NR211-CL was lower than that of the NR211, due to the stiffer CL and the lower swelling ratio of the NR211-CL. Moreover, when the humidity cycles were repeated less than 1000 times, cracks were formed in the CL. The stress-strain behaviors of the NR211-CL buckling test under a humidity cycle were investigated by using the FEM. When the NR211-CL swelled, higher stress was developed at the topside of bulge and topside of bulge round. These portions corresponded to the CL crack-formed portions in the buckling test. When the NR211-CL deswelled, the tensile stress was induced in the entire NR211. The mechanical degradation mechanisms were considered as follows: Firstly, cracks initiate and propagate in the CL when the MEA swells in repeating humidity cycles. Moreover, the tensile stress is induced in the polymer electrolyte membrane (PEM) under deswelling and the CL cracks propagate into the PEM from the CL, which results in pinholes in the PEM.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3