Pedal Actuator of Driver Robot Based on Flexible Manipulator

Author:

Yu Liangyao1,Zheng Sheng1,Chang Jinghu1,Liu Xiaoxue1

Affiliation:

1. Tsinghua University, Beijing, China

Abstract

In most testing scenarios, driver robot can improve the testing accuracy and reduce the testing time when it replaces human driver. In this paper, an innovative pedal actuator of driver robot based on flexible manipulator is designed. This pedal actuator of driver robot can save the driver cabin space by changing the shape of manipulator according to different vehicle models, so that the human driver can sit in the cabin, together with the driver robot, monitor the testing process and take over the driver robot when necessary. The proposed pedal actuator of driver robot is composed of a flexible manipulator and end effector. The end effector which is respected to generate 500N pressure in maximum is based on ball screw pairs actuated by DC motor. The flexible manipulator is designed referring to 2-DOF universal joints. The designed prism shells around joint can improve rigidity of flexible manipulator under the condition of small size. Modular link design is used and every module has 2 degrees of freedoms. Its reaching range can be adjusted by increasing or decreasing the amount of modules. A three dimensional model has been constructed and the working principle of flexible manipulator is demonstrated in this paper. Simplified kinematics model of flexible manipulator is established, and the homogeneous coordinate transformation matrix and Denavit-Hartenberg convention are used to derive the kinematics equations. And the rotation angle of prism shell which is directly related to the servo motor angle is used to express the bending angle of the universal joint in the kinematics equations, so that it becomes straightforward and simple to solve the forward kinematics problem and control the manipulator.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3