Neural Network Adaptive Robust Output Feedback Control for Driving Robot

Author:

Shao Lin1,Chen Gang1

Affiliation:

1. Nanjing University of Science & Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">To realize the accurate tracking of the vehicle speed in the process of vehicle speed tracking, a neural network adaptive robust output feedback control (NAROFC) method for the driving robot is proposed. Firstly, considering the dynamic modeling error of the mechanical leg and the time-varying disturbance force, the dynamic model of the driving robot is established. Besides, an Extended State Observer (ESO) is designed to estimate the uncertainty and constant disturbance of modeling parameters in the system. In addition, the recurrent neural network (RNN) is used to estimate the time-varying disturbances existing in the system. Finally, the system control rate is redesigned with an ESO-designed adaptive robust controller, and the switching controller is combined to realize output feedback control. The stability of the designed controller is proved by Lyapunov theorem. The experiment results show that the designed mechanical leg controller has higher tracking accuracy of mechanical legs and vehicle speed than traditional fuzzy PID and fuzzy inverse sliding mode control.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3