Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers

Author:

Sun Yekai1,Yuan Jie1,Pesaresi Luca1,Denimal Enora1,Salles Loïc1

Affiliation:

1. Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Abstract A numerical methodology is described to study the influence of the contact location and contact condition of friction damper in aircraft engines. A simplified beam model is used to represent the blade for the preliminary design stage. The frictional damper is numerically analyzed based on two parameters, contact angle and vertical position of the platform. The nonlinear modal analysis is used to investigate the nonlinear dynamic behavior and damping performances of the system. The harmonic balanced method with the continuation technique is used to compute the nonlinear modes for a large range of energy levels. By using such a modeling strategy, the modal damping ratio, resonant amplitude, and resonant frequency are directly and efficiently computed for a range of design parameters. Monte Carlo simulations together with Latin hypercube sampling is then used to assess the robustness of the frictional damper, whose contact parameters involve much uncertainties due to manufacturing tolerance and also wear effects. The influences of those two parameters are obtained, and the best performances of the frictional damper can be achieved when the contact angle is around 25 deg–30 deg. The vertical position of the platform is highly mode dependent, and other design considerations need to be accounted. The results have proved that the uncertainties that involved contact surfaces do not have significant effects on the performance of frictional damper.

Funder

China Scholarship Council

Publisher

ASME International

Subject

General Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3