Conjugate Nusselt Numbers for Simultaneously Developing Flow Through Rectangular Ducts

Author:

Karamanis Georgios1,Hodes Marc2

Affiliation:

1. Department of Mechanical Engineering, Tufts University, Medford, MA 02155 e-mail:

2. Department of Mechanical Engineering, Tufts University, Medford, MA 02155 email:

Abstract

We consider conjugate forced-convection heat transfer in a rectangular duct. Heat is exchanged through the isothermal base of the duct, i.e., the area comprised of the wetted portion of its base and the roots of its two side walls, which are extended surfaces within which conduction is three-dimensional. The opposite side of the duct is covered by an adiabatic shroud, and the external faces of the side walls are adiabatic. The flow is steady, laminar, and simultaneously developing, and the fluid and extended surfaces have constant thermophysical properties. Prescribed are the width of the wetted portion of the base, the length of the duct, and the thickness of the extended surfaces, all three of them nondimensionalized by the hydraulic diameter of the duct, and, additionally, the Reynolds number of the flow, the Prandtl number of the fluid, and the fluid-to-extended surface thermal conductivity ratio. Our conjugate Nusselt number results provide the local one along the extended surfaces, the local transversely averaged one over the isothermal base of the duct, the average of the latter in the streamwise direction as a function of distance from the inlet of the domain, and the average one over the whole area of the isothermal base. The results show that for prescribed thermal conductivity ratio and Reynolds and Prandtl numbers, there exists an optimal combination of the dimensionless width of the wetted portion of the base, duct length, and extended surface thickness that maximize the heat transfer per unit area from the isothermal base.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference18 articles.

1. Laminar-Flow Forced Convection in Rectangular Tubes;Trans. ASME,1953

2. Laminar Forced Convection in Rectangular Channels With Unequal Heat Addition on Adjacent Sides;Int. J. Heat Mass Transfer,1964

3. Heat Transfer in Fully Developed Laminar Flow Through Rectangular and Isosceles Triangular Ducts;Int. J Heat Mass Transfer,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3