The Impact of Key Simulation Variables on Predicted Residual Stresses in Pressuriser Nozzle Dissimilar Metal Weld Mock-Ups: Part 2—Comparison of Simulation and Measurements

Author:

Smith Michael C.1,Muransky Ondrej2,Goodfellow Andrew1,Kingston Ed3,Freyer Paula4,Marlette Steve5,Wilkowski Gery M.6,Brust Bud6,Shim Do-Jun6

Affiliation:

1. British Energy Generation Ltd., Barnwood, Gloucester, UK

2. Australian Nuclear Science & Technology Organisation (ANSTO), Menai, NSW, Australia

3. Veqter Ltd., Bristol, UK

4. Westinghouse Electric Co., Pittsburgh, PA

5. Westinghouse Electric Co., Monroeville, PA

6. EMC2, Columbus, OH

Abstract

British Energy (BE) has funded a large work programme to assess the possible impact of primary water stress corrosion cracking on dissimilar metal welds in the primary circuit of the Sizewell ‘B’ pressurised water reactor. This effort has included the design and manufacture of representative pressuriser safety/relief valve (SRV) nozzle welds both with and without a full structural weld overlay, multiple residual stress measurements on both mock-ups using the deep hole and incremental deep hole methods, and a number of finite element weld residual stress simulations of both the mock-ups and equivalent plant welds. Three organisations have performed simulations of the safety/relief valve nozzle configuration: Westinghouse, Engineering Mechanics Corporation of Columbus (EMC2) and the Australian Nuclear Science and Technology Organisation (ANSTO). The simulations employ different welding heat input idealisations, make different assumptions about manufacturing history, and use a variety of different material constitutive models, ranging from simple bilinear kinematic hardening to a full mixed isotropic-kinematic formulation. The availability of both high quality measurements from well characterised mock-ups, and a large matrix of simulations, offers the opportunity for a “mini-round-robin” examining both the accuracy and key solution variables of dissimilar metal weld finite element simulations. This paper is one of a series at this conference that examine various aspects of the BE work programme. It draws together residual stress measurement results and the results of all three simulation campaigns (described in detail in other papers at this conference) to examine the impact of manufacturing history, thermal modelling assumptions, material constitutive models and other key solution variables on the accuracy of residual stress predictions in this dissimilar metal weld geometry.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3