Simulation and Measurement of Through–Wall Residual Stresses in a Structural Weld Overlaid Pressurizer Nozzle

Author:

Marlette Stephen1,Freyer Paula2,Smith Michael3,Goodfellow Andrew3,Pitoiset Xavier4,Voigt Bradley5,Rishel Rick6,Kingston Ed7

Affiliation:

1. Westinghouse Electric Company LLC, Pittsburgh, PA 16066

2. Westinghouse Electric Company LLC, Pittsburgh, PA 15235

3. British Energy, Gloucester, GL4 3RS, UK

4. Westinghouse Electric Belgium SA, Nivelles 1400, Belgium

5. WEC Welding & Machining LLC, Lake Bluff, IL 60044

6. WesDyne International, Madison, PA 15663

7. VEQTER Ltd, Bristol, BS8 1QU, UK

Abstract

Full structural weld overlays (FSWOLs) have been used extensively as a repair/mitigation technique for primary water stress corrosion cracking in pressurizer nozzle dissimilar metal (DM) welds. To support an approved FSWOL design and safety submission for British Energy pressurized water reactor (PWR) nozzles, an in-depth evaluation was performed to assess the effects of a FSWOL on the through wall residual stress distribution in safety/relief pressurizer nozzles. Two safety/relief pressurizer nozzle mockups were fabricated based on British Energy’s PWR nozzle design. One mockup included the nozzle to safe-end DM weld and the safe-end to stainless steel weld, while the second mockup included the DM weld, the stainless steel weld, and a Westinghouse designed structural weld overlay. The mockups were fabricated utilizing materials and techniques that represented the plant specific nozzles as closely as possible and detailed welding parameters were recorded during fabrication. All welds were subsequently nondestructively evaluated (NDE). A thorough review of the detailed fabrication records and the NDE results was performed and several circumferential positions were selected on each mockup for subsequent residual stress measurement. The through wall residual stress profiles were experimentally measured through the DM weld centerline at the selected circumferential positions using both the deep-hole drilling (DHD) and incremental deep-hole drilling (iDHD) measurement techniques. In addition to experimental residual stress measurements, the through-wall residual stress profiles were simulated using a 2D axisymmetric ansys™ finite element (FE) model. The model utilized the application of temperature constraints on the weld elements to simulate the thermal welding cycle which greatly simplified the simulation as compared with detailed heat source modeling methods. Kinematic strain hardening was used for material modeling of the weld and base metals. A range of residual weld stress profiles was calculated by varying the time at which the temperature constraints were applied to the model. The simulation results were compared with the measurement results. It was found that the effects of the FSWOL were principally threefold. Specifically, the FSWOL causes a much deeper compressive stress field, i.e., the overlay shifts tension out toward the outside diameter (OD) surface. Furthermore, the FSWOL reduces tension in the underlying dissimilar metal weld, and finally, the FSWOL causes higher peak compressive and tensile residual stresses, both of which move deeper into the nozzle wall after the overlay is applied. Relatively good agreement was observed between the FE results and the measurements results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3