Elastic Anisotropy of Human Cortical Bone Secondary Osteons Measured by Nanoindentation

Author:

Franzoso Giampaolo1,Zysset Philippe K.2

Affiliation:

1. Laboratory of Biological Structure Mechanics (LaBS), Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

2. Institute of Lightweight Design and Structural Biomechanics (ILSB), Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria

Abstract

The identification of anisotropic elastic properties of lamellar bone based on nanoindentation data is an open problem. Therefore, the purpose of this study was to develop a method to estimate the orthotropic elastic constants of human cortical bone secondary osteons using nanoindentation in two orthogonal directions. Since the indentation modulus depends on all elastic constants and, for anisotropic materials, also on the indentation direction, a theoretical model quantifying the indentation modulus from the stiffness tensor of a given material was implemented numerically (Swadener and Pharr, 2001, “Indentation of Elastically Anisotropic Half-Spaces by Cones and Parabolae of Revolution,” Philos. Mag. A, 81(2), pp. 447–466). Nanoindentation was performed on 22 osteons of the distal femoral shaft: A new holding system was designed in order to indent the same osteon in two orthogonal directions. To interpret the experimental results and identify orthotropic elastic constants, an inverse procedure was developed by using a fabric-based elastic model for lamellar bone. The experimental indentation moduli were found to vary with the indentation direction and showed a marked anisotropy. The estimated elastic constants showed different degrees of anisotropy among secondary osteons of the same bone and these degrees of anisotropy were also found to be different than the one of cortical bone at the macroscopic level. Using the log-Euclidean norm, the relative distance between the compliance tensors of the estimated mean osteon and of cortical bone at the macroscopic level was 9.69%: Secondary osteons appeared stiffer in their axial and circumferential material directions, and with a greater bulk modulus than cortical bone, which is attributed to the absence of vascular porosity in osteonal properties. The proposed method is suitable for identification of elastic constants from nanoindentation experiments and could be adapted to other (bio)materials, for which it is possible to describe elastic properties using a fabric-based model.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3