Elastohydrodynamic Film Thickness in Elliptical Contacts With Spinning and Rolling

Author:

Zou Qian1,Huang Changhua1,Wen Shizhu1

Affiliation:

1. State Key Laboratory of Tribology, Department of Precision Instruments, Tsinghua University, Beijing 100084, P.R. China

Abstract

In this paper, a theoretical model for the film thickness prediction of elastohydrodynamic lubrication of elliptical contacts with spinning and rolling/sliding motions is presented, in which 1) an effective ellipticity ratio ke is introduced to present the ellipse feature instead of the normal ellipticity ratio k in case of that the entraining velocity at the center of contact ellipse is at an angle with minor axis, 2) Roelands and Dowson-Higginson’s equations are adopted to express the influence of pressure upon lubricant viscosity and density, 3) multilevel/multigrid techniques, with low complexity and good stability, are used for the purpose of reducing computing time in the complex numerical analysis. With this model the characteristics of film shape and pressure distribution of elastohydrodynamic lubrication of elliptical concentrated contacts with spinning and rolling/sliding were discussed. The results showed that the spinning motion has significant influence on the film shape and pressure distribution. Based on a large number of numerical results of elastohydrodynamic lubrication analysis of elliptical concentrated contacts with spinning and rolling/sliding, new expressions for the minimum and central film thickness prediction were regressed. Their accuracy was analyzed by comparisons with numerical results of an evaluation set and others’ expressions under pure rolling and/or sliding condition. The comparisons showed that the two new expressions have satisfactory accuracy and potential application to engineering analysis and design.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3