A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. II. General case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle

Author:

Abstract

The initial objective of the work reported in this paper was the development of generalized representations of film thickness results for elastohydrodynamic conjunctions in which lubricant entrainment coincided with one of the principal axes of the Hertzian conjunction. Some 106 solutions have been considered, including 33 presented in part I for entrainment along the major axis, four further solutions of a similar kind, the 34 solutions presented by Hamrock & Dowson ( J. lubr. Technol . 98, 264-276 (1977)) for entrainment along the minor axis and 35 new solutions for similar geometries. It has been shown that normalization of the principal parameters in terms of the curvature in the direction of lubricant entrainment, 1/ R e , permits the display of both central and minimum film thickness values as functions of the ratio of the radii of the solids normal to, and in the direction of, lubricant entrainment. These continuous curves enable film thickness to be predicted over a very wide range of geometrical configurations, but valid empirical expressions for both central and minimum dimensionless film thickness have also been developed. The second major feature of the study was to develop elastohydrodynamic solutions for the non-symmetrical conditions encountered when the lubricant entraining vector did not coincide with either of the principal axes of the conjunction. Such solutions are more representative of the conditions encountered in certain machine elements than the symmetrical solutions already reported. Examples of the resulting nonsymmetrical pressure distributions, elastic deformations and film shapes are presented. It is shown that normalization in terms of the curvature in the direction of lubricant entrainment, and the use of a simple trigonometric function, enables both the central and minimum film thicknesses to be predicted for any entrainment angle. It is demonstrated that this comprehensive and generalized presentation of new and previous solutions to the elastohydrodynamic lubrication problem for elliptical conjunctions yields film thickness predictions that compare very well indeed with specific solutions reported earlier. It is further shown that the central film thickness is little affected by the orientation of the lubricant entraining vector for many ellipsoidal solids, but that the minimum film thicknesses encountered cover a much wider range of values. In many cases the minimum film thicknesses occur in side-lobes located near the lateral boundaries of the Hertzian conjunction, which perform a sealing role and thus permit the generation of near-Hertzian hydrodynamic pressures in the central regions of the conjunction. The results are expected to provide a basis for the analysis and design of a wide range of machine elements operating in the elastohydrodynamic régime of lubrication.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference11 articles.

1. Proc. Instn mech;Archard J. F.;Engrs,1966

2. J.lubr;Cheng H. S.;Technol.,1970

3. Proc. Instn mech;Dowson D.;Engrs,1983

4. Elastohydrodynamic Iubrication (1st edn). Oxford: Pergamon. Evans, H. P. & Snidle, R. W. 1981 J.lubr;Dowson D.;Technol.,1966

5. Hamrock B. J. & Dowson D. 1981 Ball bearing Iubrication: the elastohydrodynamics of elliptical contacts. New York: Wiley.

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3