An Analysis Method for Multistage Transonic Turbines With Coolant Mass Flow Addition

Author:

Mildner F.1,Gallus H. E.1

Affiliation:

1. Institut fu¨r Strahlantriebe und Turboarbeitsmaschinen, Rheinisch-Westfa¨lische Technische Hochschule Aachen, Aachen, Germany

Abstract

The subject of this paper is a numerical method for the calculation of the transonic flow field of multistage turbines, taking high coolant flow into account. To reduce the processing time, a throughflow method based on the principels of Wu is used for the hub-to-tip calculation. The flow field is obtained by an iterative solution between a three-dimensional inviscid hyperbolic time-dependent algorithm with an implicit finite volume method for the blade-to-blade calculations using C-meshes and a single representative meridional S2m-streamsurface. Along the S2m-plane with respect to nonorthogonal curvilinear coordinates, the stream function equation governing fluid flow is established. The cooling air inflow inside the blade passage forbids the assumption of a constant mass flow along the main stream direction. To consider the change of the aerodynamic and thermodynamic behavior, a cooling air model was developed and implemented in the algorithm, which allows the mixing of radially arbitrarily distributed cooling air in the trailing edge section of each blade row. The viscous effects and the influence of cooling air mixing are considered by the use of selected loss correlations for profile, tip leakage, secondary flow and mixing losses in the S2m-plane in terms of entropy. The method is applied to the four-stage high-temperature gas turbine Siemens KWU V84.3. The numerical results obtained are in good agreement with the experimental data.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Model for CFD-Based Throughflow Analysis of Film-Cooled Turbine Blade;Journal of Thermal Science;2022-03-10

2. An automated strategy for gas turbines off-design predictions with a CFD-based throughflow method;Applied Thermal Engineering;2021-06

3. Aero-thermal coupled through-flow method for cooled turbines with new cooling model;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2017-09-25

4. Convective cooling model for aero-thermal coupled through-flow method;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2017-01-06

5. Development of an aero-thermal coupled through-flow method for cooled turbines;Science China Technological Sciences;2015-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3