Experimental and Numerical Investigations of the Aerodynamical Effects of Coolant Injection Through the Trailing Edge of a Guide Vane

Author:

Bohn Dieter E.1,Becker Volker J.1,Behnke Klaus D.1,Bonhoff Bernhard F.1

Affiliation:

1. Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany

Abstract

Effective turbine blade cooling is necessary to enhance the efficiency of gas turbines. Usually the coolant is mainly ejected through the trailing edge of the vanes. In addition to the desired temperature reduction at the trailing edge there is a 3D-aerodynamical interaction between the hot gas and the coolant. The complex mechanisms of the mixture are a main problem in the numerical prediction of the flow situation in this region. This paper presents the experimental and numerical results of investigations of annular guide vanes. The experiments were conducted in a scaled turbine test rig. The mixing flow of coolant and hot gas was analyzed by measurement of the distribution of both velocity and turbulence very close to the trailing edge using a 2D-LDA measurement technique at different radial positions. The experimental results show that the radial and circumferential distribution of the coolant depends on the pressure gradient in both directions. Inside of the mixture region the turbulence was found to be anisotropic resulting in a non-symmetrical distribution of the coolant. For the numerical calculations a Navier-Stokes-Code was used. The numerical scheme works on the basis of an implicit finite volume method combined with a multi block technique. In order to simulate the aerodynamical effects near the injection slot of the vane it was nessessary to include the coolant flow inside the guide vane.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3