A Novel Package-Integrated Cyclone Cooler for the Thermal Management of Power Electronics

Author:

Miorini Rinaldo1,Sharar Darin2,Gowda Arun1,Hoel Cathleen1,Whalen Bryan1,de Bock Peter1

Affiliation:

1. One Research Center, Niskayuna, NY 12309

2. Adelphi Laboratory Center—Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783

Abstract

Abstract In order for electronics packaging power density to increase, innovations and improvements in heat transfer are required. Electrification of transportation has the potential for significant fuel and energy savings. Changing to an electrified drive train requires reliable and efficient power electronics to provide power conversion between alternating current motors and direct current energy storage. For high power transportation systems like aircrafts or heavy vehicles, the power density of power electronics needs to be improved. Power density is also an enabler for high power military devices that must be used and transported via air, ground, and sea. This paper summarizes the outcome of a collaborative and multidisciplinary research effort aimed at co-designing a novel electronics cooling device that utilizes two-phase fluid flow. Two-phase flow cooling has been known for decades as well as the risks associated with it: critical heat flux (CHF), dry-out, and thermal runaway. Our research de-risks the two-phase cooling technology by swirling the flow to remove the bubbles from the wall and confining them at the core of the cooler. The combined effects of gas phase removal, enhanced nucleation, and dramatic liquid film agitation and rupture have been quantified by our experiments: double the heat transfer coefficient with only 13% increase in pressure drop. Besides advanced fluid-dynamics, our Package-Integrated Cyclone Cooler (PICCO) utilizes cutting edge packaging and additive manufacturing technology such as direct deposition of a metal substrate and circuits (dies) on a complex helical cooler that can only be manufactured via three-dimensional printing. By co-designing and testing the cooler, we have quantified the impact of the swirled flow on the junction temperature with respect to a conventional (non-swirl) two-phase-flow-cooled power electronics package. At steady-state, our post-test thermal simulations predict a junction temperature reduction from 185 °C to 75 °C at the same power dissipation. When the heat load is unsteady (United States Environmental Protection Agency Urban Drive Cycle), the junction temperature reduction is 140 °C to 60 °C.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference50 articles.

1. Fluid Flow, Heat Transfer and Boiling in Microchannels,2009

2. Novel Heat Transfer Fluids for Direct Immersion Phase Change Cooling of Electronic Systems;Int. J. Heat Mass Transfer,2012

3. A Review of Two-Phase Forced Cooling in Three-Dimensional Stacked Electronics: Technology Integration;ASME J. Electron. Packag.,2015

4. History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review;ASME J. Heat Transfer-Trans. ASME,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3