Effect of Substrate Flexibility on the Pressure Distribution and Lifting Force Generated by a Bernoulli Gripper

Author:

Brun X.1,Melkote S. N.1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

This paper presents the modeling and analysis of the pressure distribution and lifting force generated by a Bernoulli gripper when handling flexible substrates such as thin silicon wafers. A Bernoulli gripper is essentially a radial airflow nozzle used to handle large and small, rigid and nonrigid materials by creating a low pressure region or vacuum between the gripper and material. Previous studies on Bernoulli gripping have analyzed the pressure distribution and lifting force for handling thick substrates that undergo negligible deformation. Since the lifting force produced by the gripper is a function of the gap between the handled object and the gripper, any deformation of the substrate will influence the gap and consequently the pressure distribution and lifting force. In this paper, the effect of substrate (thin silicon wafer) flexibility on the equilibrium wafer deformation, radial pressure distribution and lifting force is modeled and analyzed using a combination of computational fluid dynamics (CFD) modeling and finite element analysis. The equilibrium wafer deformation for different air flow rates is compared with experimental data and is shown to be in good agreement. In addition, the effect of wafer deformation on the pressure and lifting force are shown to be significant at higher volumetric airflow rates. The modeling and analysis approach presented in this paper is particularly useful for evaluating the effect of gripper variables on the handling stresses generated in thin silicon wafers and for gripper design optimization.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Next Big Challenge for PV Makers: Wafer Handling;Teschler;Mach. Des.

2. Novel Technology for Handling Very Thin Wafers;Binder;Solid State Technol.

3. Benjamin, J. M., and Brick Town, N. J., 1969, “Pneumatic Probe for Handling Flat Objects,” U.S. Patent No. 3,425,736.

4. Mammel, W. K. , 1969, “Pickup Device for Supporting Workpieces on a Layer of Fluid,” U.S. Patent No. 3,431,009.

5. Air Film System for Handling Semiconductor Wafers;Paivanas;IBM J. Res. Dev.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3