Automated Design of Energy Efficient Control Strategies for Building Clusters Using Reinforcement Learning

Author:

Odonkor Philip1,Lewis Kemper2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University at Buffalo-SUNY, Buffalo, NY 14260 e-mail:

2. Professor Department of Mechanical and Aerospace Engineering, University at Buffalo-SUNY, Buffalo, NY 14260 e-mail:

Abstract

The control of shared energy assets within building clusters has traditionally been confined to a discrete action space, owing in part to a computationally intractable decision space. In this work, we leverage the current state of the art in reinforcement learning (RL) for continuous control tasks, the deep deterministic policy gradient (DDPG) algorithm, toward addressing this limitation. The goals of this paper are twofold: (i) to design an efficient charged/discharged dispatch policy for a shared battery system within a building cluster and (ii) to address the continuous domain task of determining how much energy should be charged/discharged at each decision cycle. Experimentally, our results demonstrate an ability to exploit factors such as energy arbitrage, along with the continuous action space toward demand peak minimization. This approach is shown to be computationally tractable, achieving efficient results after only 5 h of simulation. Additionally, the agent showed an ability to adapt to different building clusters, designing unique control strategies to address the energy demands of the clusters studied.

Funder

Division of Computer and Network Systems

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3