Investigating Suitable Combinations of Dynamic Models and Control Techniques for Offline Reinforcement Learning Based Navigation: Application of Universal Omni-Wheeled Robots

Author:

Amarasiri Nalaka1,Barhorst Alan A.1,Gottumukkala Raju1

Affiliation:

1. University of Louisiana at Lafayette Department of Mechanical Engineering, , Lafayette, LA 70504

Abstract

Abstract Omnidirectional locomotion provides wheeled mobile robots (WMR) with better maneuverability and flexibility, which enhances their energy efficiency and dexterity. Universal omni-wheels are one of the best categories of wheels that can be used to develop a WMR (Amarasiri et al., 2022, “Robust Dynamic Modeling and Trajectory Tracking Controller of a Universal Omni-Wheeled Mobile Robot,” ASME Letters Dyn. Sys. Control., 2(4), p. 040902. 10.1115/1.4055690). We study dynamic modeling and controllers for mobile robots to train in a reinforcement learning (RL)-based navigation algorithm. RL tasks require copious amounts of learning iteration episodes, which makes training very time consuming. The choice of dynamic model and controller has a significant impact on training time. In this paper, we compare a traditional Kane’s equations model to a non-holonomic canonical momenta model (Barhorst, 2019, “Generalized Momenta in Constrained Non-Holonomic Systems—Another Perspective on the Canonical Equations of Motion,” Int. J. Non-Linear Mech., 113, pp. 128–145.). We implemented four controllers: proportional integral derivative, linear quadratic regulator with integral action, pole placement, and a full nonlinear sliding mode controller. We summarize the pros and cons of each of the modeling techniques, and control laws implemented. The outcomes of our analysis will improve RL training time for path generation in unstructured environments.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3