Self-Lubricating and Friction Performance of a Three-Dimensional-Printed Journal Bearing

Author:

Lee Yeong-Jae1,Lee Kwang-Hee2,Lee Chul-Hee3

Affiliation:

1. Department of Mechanical Engineering, Inha University, 4-132A, 100 Inha-ro, Nam-Gu Incheon 22212, South Korea e-mail:

2. Department of Mechanical Engineering, Inha University, 4-132A, 100 Inha-ro, Nam-Gu, Incheon 22212, South Korea e-mail:

3. Department of Mechanical Engineering, Inha University, 2N269B, 100 Inha-ro, Nam-Gu Incheon 22212, South Korea e-mail:

Abstract

In recent years, through the development of three-dimensional (3D) printing technology, 3D‐printed parts have been used in various industries, such as medical equipment and robotics. Various 3D printing methods have been developed. Today, a 3D printer can be used even in precision parts, such as bolts and bearings. In this study, journal bearings are manufactured by a 3D printer to evaluate friction performance and self-lubricating performance. The journal bearings are fabricated using two types of 3D printing method: fused deposition modeling (FDM) and selective laser sintering (SLS). The specimens manufactured by FDM are produced by plastic materials with three-layer thicknesses. Nylon-based materials and aluminum-based materials are used to fabricate the SLS specimen. Micropores are created in the specimens during the printing process. Therefore, the self-lubricating performance can occur by micropores. The experimental setup is designed and constructed to evaluate the friction performance by varying rotational speed and the radial load. Through this study, the self-lubricating performance and friction performance of 3D-printed journal bearings are evaluated, and proper operating conditions for 3D-printed bearings are suggested.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3